Skip to content

Often you will resample a dataset hundreds or thousands of times. Storing the complete resample each time would be very inefficient so this class instead stores a "pointer" to the original dataset, and a vector of row indexes. To turn this into a regular data frame, call as.data.frame, to extract the indices, use as.integer.

Usage

resample(data, idx)

Arguments

data

The data frame

idx

A vector of integer indexes indicating which rows have been selected. These values should lie between 1 and nrow(data) but they are not checked by this function in the interests of performance.

See also

Other resampling techniques: bootstrap(), resample_bootstrap(), resample_partition()

Examples

resample(mtcars, 1:10)
#> <resample [10 x 11]> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

b <- resample_bootstrap(mtcars)
b
#> <resample [32 x 11]> 23, 29, 23, 13, 5, 11, 6, 10, 5, 14, ...
as.integer(b)
#>  [1] 23 29 23 13  5 11  6 10  5 14 24 28 19 30 20 24 31 32 24 21  1 15 24
#> [24] 28  7  4 12 11  4  2 13 25
as.data.frame(b)
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> AMC Javelin.1       15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Hornet Sportabout.1 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Camaro Z28.1        13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
#> Camaro Z28.2        13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Camaro Z28.3        13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Lotus Europa.1      30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 280C.1         17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Hornet 4 Drive.1    21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Merc 450SL.1        17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2

# Many modelling functions will do the coercion for you, so you can
# use a resample object directly in the data argument
lm(mpg ~ wt, data = b)
#> 
#> Call:
#> lm(formula = mpg ~ wt, data = b)
#> 
#> Coefficients:
#> (Intercept)           wt  
#>       39.46        -6.30  
#>